References

Abualsaud, M., & Smucker, M. D. (2019). Patterns of search result examination: Query to first action. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 1833–1842. https://doi.org/10.1145/3357384.3358041
Arguello, J., & Choi, B. (2019). The effects of working memory, perceptual speed, and inhibition in aggregated search. ACM Transactions on Information Systems, 37(3). https://doi.org/10.1145/3322128
Aula, A., Majaranta, P., & Räihä, K.-J. (2005). Eye-tracking reveals the personal styles for search result evaluation. In M. F. Costabile & F. Paternò (Eds.), Human-computer interaction - INTERACT 2005 (pp. 1058–1061). Springer Berlin Heidelberg.
Bailey, E., & Kelly, D. (2011). Is amount of effort a better predictor of search success than use of specific search tactics? Proceedings of the American Society for Information Science and Technology, 48(1), 1–10.
Balatsoukas, P., & Ruthven, I. (2010). The use of relevance criteria during predictive judgment: An eye tracking approach. Proceedings of the American Society for Information Science and Technology, 47(1), 1–10. https://doi.org/10.1002/meet.14504701145
Balatsoukas, P., & Ruthven, I. (2012). An eye-tracking approach to the analysis of relevance judgments on the Web: The case of Google search engine. Journal of the American Society for Information Science and Technology, 63(9), 1728–1746. https://doi.org/10.1002/asi.22707
Belkin, N. J., Oddy, R. N., & Brooks, H. M. (1982). ASK for information retrieval: Part i. Background and theory. Journal of Documentation.
Beymer, D., Orton, P. Z., & Russell, D. M. (2007). An eye tracking study of how pictures influence online reading. IFIP Conference on Human-Computer Interaction, 456–460.
Bhattacharya, N., & Gwizdka, J. (2018). Relating eye-tracking measures with changes in knowledge on search tasks. Symposium on Eye Tracking Research & Applications (ETRA).
Bhattacharya, N., & Gwizdka, J. (2019b). Measuring learning during search: Differences in interactions, eye-gaze, and semantic similarity to expert knowledge. Proceedings of the 2019 Conference on Human Information Interaction and Retrieval, 63–71.
Bhattacharya, N., & Gwizdka, J. (2019a). Measuring learning during search: Differences in interactions, eye-gaze, and semantic similarity to expert knowledge. CHIIR’19.
Bilal, D., & Gwizdka, J. (2016). Children’s Eye-fixations on Google Search Results. Proceedings of the 79th ASIS&T Annual Meeting, 79, 89:1–89:6. https://doi.org/10.1002/pra2.2016.14505301089
Boldi, P., Bonchi, F., Castillo, C., & Vigna, S. (2009). From" dango" to" japanese cakes": Query reformulation models and patterns. 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 1, 183–190.
Borlund, P. (2013). Interactive Information Retrieval: An Introduction. Journal of Information Science Theory and Practice, 1(3), 12–32. https://doi.org/10.1633/JISTAP.2013.1.3.2
Broder, A. (2002). A taxonomy of web search. SIGIR Forum, 36(2), 3–10. https://doi.org/10.1145/792550.792552
Brookes, B. C. (1980). The foundations of information science. Part i. Philosophical aspects. Journal of Information Science, 2(3-4), 125–133.
Buscher, G., Cutrell, E., & Morris, M. R. (2009). What Do You See When You’re Surfing? Using Eye Tracking to Predict Salient Regions of Web Pages. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 10.
Buscher, G., Dumais, S. T., & Cutrell, E. (2010). The good, the bad, and the random: An eye-tracking study of ad quality in web search. Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 42–49. https://doi.org/10.1145/1835449.1835459
Chen, Y., Zhao, Y., & Wang, Z. (2020). Understanding online health information consumers’ search as a learning process. Library Hi Tech.
Cole, L., MacFarlane, A., & Makri, S. (2020). More than words: The impact of memory on how undergraduates with dyslexia interact with information. Proceedings of the 2020 Conference on Human Information Interaction and Retrieval, 353–357. https://doi.org/10.1145/3343413.3378005
Cole, M. J., Gwizdka, J., Liu, C., Belkin, N. J., & Zhang, X. (2013). Inferring user knowledge level from eye movement patterns. Information Processing & Management, 49(5), 1075–1091.
Cutrell, E., & Guan, Z. (2007). What are you looking for? An eye-tracking study of information usage in web search. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 407–416. https://doi.org/10.1145/1240624.1240690
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.
Djamasbi, S., Hall-Phillips, A., & Yang, R. (Rachel). (2013). Search Results Pages and Competition for Attention Theory: An Exploratory Eye-Tracking Study. In S. Yamamoto (Ed.), Human Interface and the Management of Information. Information and Interaction Design (pp. 576–583). Springer Berlin Heidelberg. http://link.springer.com.ezproxy.lib.utexas.edu/chapter/10.1007/978-3-642-39209-2-64
Dumais, S. T., Buscher, G., & Cutrell, E. (2010). Individual differences in gaze patterns for web search. Proceedings of the Third Symposium on Information Interaction in Context, 185–194. https://doi.org/10.1145/1840784.1840812
Egusa, Y., Saito, H., Takaku, M., Terai, H., Miwa, M., & Kando, N. (2010). Using a Concept Map to Evaluate Exploratory Search. Proceedings of the Third Symposium on Information Interaction in Context, 175–184. https://doi.org/10.1145/1840784.1840810
Egusa, Y., Takaku, M., & Saito, H. (2014a). How Concept Maps Change if a User Does Search or Not? Proceedings of the 5th Information Interaction in Context Symposium, 68–75. https://doi.org/10.1145/2637002.2637012
Egusa, Y., Takaku, M., & Saito, H. (2014b). How to evaluate searching as learning. Searching as Learning Workshop (IIiX 2014 Workshop). http://www.diigubc.ca/IIIXSAL/program.html
Egusa, Y., Takaku, M., & Saito, H. (2017). Evaluating Complex Interactive Searches Using Concept Maps. SCST@ CHIIR, 15–17.
Eickhoff, C., Dungs, S., & Tran, V. (2015). An eye-tracking study of query reformulation. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 13–22. https://doi.org/10.1145/2766462.2767703
Gadiraju, U., Yu, R., Dietze, S., & Holtz, P. (2018). Analyzing knowledge gain of users in informational search sessions on the web. Conference on Human Information Interaction & Retrieval (CHIIR).
Ghosh, S., Rath, M., & Shah, C. (2018). Searching as learning: Exploring search behavior and learning outcomes in learning-related tasks. Conference on Human Information Interaction & Retrieval (CHIIR).
Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., & Wichansky, A. M. (2002). Eye tracking in web search tasks: Design implications. Proceedings of the 2002 Symposium on Eye Tracking Research & Applications, 51–58.
González-Ibáñez, R., Esparza-Villamán, A., Vargas-Godoy, J. C., & Shah, C. (2019). A comparison of unimodal and multimodal models for implicit detection of relevance in interactive IR. Journal of the Association for Information Science and Technology, 0(0). https://doi.org/10.1002/asi.24202
Gossen, T., Höbel, J., & Nürnberger, A. (2014). A comparative study about children’s and adults’ perception of targeted web search engines. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1821–1824. https://doi.org/10.1145/2556288.2557031
Granka, L. A., Joachims, T., & Gay, G. (2004). Eye-tracking analysis of user behavior in WWW search. Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 478–479. https://doi.org/10.1145/1008992.1009079
Groner, R., Walder, F., & Groner, M. (1984). Looking at faces: Local and global aspects of scanpaths. In Advances in psychology (Vol. 22, pp. 523–533). Elsevier.
Guan, Z., & Cutrell, E. (2007). An eye tracking study of the effect of target rank on web search. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 417–420. https://doi.org/10.1145/1240624.1240691
Gwizdka, J. (2013). Effects of working memory capacity on users’ search effort. Proceedings of the International Conference on Multimedia, Interaction, Design and Innovation, 11:1–11:8. https://doi.org/10.1145/2500342.2500358
Gwizdka, J. (2014). Characterizing Relevance with Eye-tracking Measures. Proceedings of the 5th Information Interaction in Context Symposium, 58–67. https://doi.org/10.1145/2637002.2637011
Gwizdka, J. (2017). I Can and So I Search More: Effects Of Memory Span On Search Behavior. Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval, 341–344. https://doi.org/10.1145/3020165.3022148
Gwizdka, J. (2018). Inferring Web Page Relevance Using Pupillometry and Single Channel EEG. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. Léger, & A. B. Randolph (Eds.), Information Systems and Neuroscience (pp. 175–183). Springer International Publishing. https://doi.org/10.1007/978-3-319-67431-5-20
Gwizdka, J., & Bilal, D. (2017). Analysis of Children’s Queries and Click Behavior on Ranked Results and Their Thought Processes in Google Search. Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval, 377–380. https://doi.org/10.1145/3020165.3022157
Gwizdka, J., & Zhang, Y. (2015a). Differences in Eye-Tracking Measures Between Visits and Revisits to Relevant and Irrelevant Web Pages. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 811–814. https://doi.org/10.1145/2766462.2767795
Gwizdka, J., & Zhang, Y. (2015b). Towards Inferring Web Page Relevance An Eye-Tracking Study. Proceedings of iConference’2015, 5. https://www.ideals.illinois.edu/handle/2142/73709
Halttunen, K., & Jarvelin, K. (2005). Assessing learning outcomes in two information retrieval learning environments. Information Processing & Management, 41(4), 949–972. https://doi.org/10.1016/j.ipm.2004.02.004
Hofmann, K., Mitra, B., Radlinski, F., & Shokouhi, M. (2014). An eye-tracking study of user interactions with query auto completion. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, 549–558. https://doi.org/10.1145/2661829.2661922
Huang, X., & Soergel, D. (2013). Relevance: An improved framework for explicating the notion. Journal of the American Society for Information Science and Technology, 64(1), 18–35. https://doi.org/10.1002/asi.22811
Jiang, J., He, D., & Allan, J. (2014). Searching, browsing, and clicking in a search session: Changes in user behavior by task and over time. Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, 607–616. https://doi.org/10.1145/2600428.2609633
Josephson, S., & Holmes, M. E. (2002). Visual attention to repeated internet images: Testing the scanpath theory on the world wide web. Proceedings of the 2002 Symposium on Eye Tracking Research & Applications, 43–49.
Kanniainen, L., Kiili, C., Tolvanen, A., Aro, M., Anmarkrud, Ø., & Leppänen, P. H. T. (2021). Assessing reading and online research comprehension: Do difficulties in attention and executive function matter? Learning and Individual Differences, 87, 101985. https://doi.org/10.1016/j.lindif.2021.101985
Kelly, D. (2006a). Measuring online information seeking context, Part 1: Background and method. Journal of the American Society for Information Science and Technology, 57(13), 1729–1739. https://doi.org/10.1002/asi.20483
Kelly, D. (2006b). Measuring online information seeking context, Part 2: Findings and discussion. Journal of the American Society for Information Science and Technology, 57(14), 1862–1874. https://doi.org/10.1002/asi.20484
Kelly, D. (2009). Methods for evaluating interactive information retrieval systems with users. Foundations and Trends in Information Retrieval, 3(1—2), 1–224.
Kelly, D., Dumais, S., & Pedersen, J. O. (2009). Evaluation challenges and directions for information-seeking support systems. IEEE Computer, 42(3).
Ko, A. J. (2021). Seeking information. In Foundations of Information. https://faculty.washington.edu/ajko/books/foundations-of-information/#/seeking
Koeman, L. (2020). HCI/UX research: What methods do we use? – lisa koeman – blog. https://lisakoeman.nl/blog/hci-ux-research-what-methods-do-we-use/.
Kruikemeier, S., Lecheler, S., & Boyer, M. M. (2018). Learning from news on different media platforms: An eye-tracking experiment. Political Communication, 35(1), 75–96.
Kuhlthau, C. C. (2004). Seeking meaning: A process approach to library and information services (Vol. 2). Libraries Unlimited Westport, CT.
Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity for word sense identification. WordNet: An Electronic Lexical Database, 49(2), 265–283.
Leu, D. J., Forzani, E., Rhoads, C., Maykel, C., Kennedy, C., & Timbrell, N. (2015). The New Literacies of Online Research and Comprehension: Rethinking the Reading Achievement Gap. Reading Research Quarterly, 50(1), 37–59. https://doi.org/10.1002/rrq.85
Li, Y., & Belkin, N. J. (2008). A faceted approach to conceptualizing tasks in information seeking. Information Processing & Management, 44(6), 1822–1837.
Ling, C., Steichen, B., & Choulos, A. G. (2018). A comparative user study of interactive multilingual search interfaces. Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, 211–220. https://doi.org/10.1145/3176349.3176383
Liu, C., Gwizdka, J., Liu, J., Xu, T., & Belkin, N. J. (2010). Analysis and evaluation of query reformulations in different task types. Proceedings of the American Society for Information Science and Technology, 47(1), 1–9.
Liu, Z., Liu, Y., Zhou, K., Zhang, M., & Ma, S. (2015). Influence of vertical result in web search examination. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 193–202. https://doi.org/10.1145/2766462.2767714
Lorigo, L., Haridasan, M., Brynjarsdóttir, H., Xia, L., Joachims, T., Gay, G., Granka, L., Pellacini, F., & Pan, B. (2008). Eye tracking and online search: Lessons learned and challenges ahead. Journal of the American Society for Information Science and Technology, 59(7), 1041–1052. https://doi.org/10.1002/asi.20794
Lorigo, L., Pan, B., Hembrooke, H., Joachims, T., Granka, L., & Gay, G. (2006). The influence of task and gender on search and evaluation behavior using google. Information Processing & Management, 42(4), 1123–1131.
Mao, J., Liu, Y., Kando, N., Zhang, M., & Ma, S. (2018). How does domain expertise affect users’ search interaction and outcome in exploratory search? ACM Transactions on Information Systems, 36.
Marchionini, G. (1995). Information Seeking in Electronic Environments. Cambridge University Press.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.
O’Brien, H. L., Kampen, A., Cole, A. W., & Brennan, K. (2020). The role of domain knowledge in search as learning. Conference on Human Information Interaction and Retrieval (CHIIR).
Palani, S., Fourney, A., Williams, S., Larson, K., Spiridonova, I., & Morris, M. R. (2020). An eye tracking study of web search by people with and without dyslexia. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 729–738. https://doi.org/10.1145/3397271.3401103
Pan, B., Hembrooke, H. A., Gay, G. K., Granka, L. A., Feusner, M. K., & Newman, J. K. (2004). The determinants of web page viewing behavior: An eye-tracking study. Proceedings of the 2004 Symposium on Eye Tracking Research & Applications, 147–154.
Pennanen, M., & Vakkari, P. (2003). Students’ conceptual structure, search process, and outcome while preparing a research proposal: A longitudinal case study. Journal of the American Society for Information Science and Technology, 54(8), 759–770.
Pirolli, P., Schank, P., Hearst, M., & Diehl, C. (1996). Scatter/gather browsing communicates the topic structure of a very large text collection. Conference on Human Factors in Computing Systems (CHI’96).
Qvarfordt, P., Golovchinsky, G., Dunnigan, T., & Agapie, E. (2013). Looking ahead: Query preview in exploratory search. Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, 243–252. https://doi.org/10.1145/2484028.2484084
Rieh, S. Y., Collins-Thompson, K., Hansen, P., & Lee, H.-J. (2016). Towards searching as a learning process: A review of current perspectives and future directions. Journal of Information Science, 42(1), 19–34. https://doi.org/10.1177/0165551515615841
Rieh, S. Y., Kim, Y.-M., & Markey, K. (2012). Amount of invested mental effort (AIME) in online searching. Information Processing & Management, 48(6), 1136–1150.
Roy, N., Moraes, F., & Hauff, C. (2020). Exploring users’ learning gains within search sessions. Conference on Human Information Interaction and Retrieval (CHIIR).
Roy, N., Torre, M. V., Gadiraju, U., Maxwell, D., & Hauff, C. (2021). Note the highlight: Incorporating active reading tools in a search as learning environment. Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, 229–238.
Saracevic, T. (1975). Relevance: A review of and a framework for the thinking on the notion in information science. Journal of the American Society for Information Science, 26(6), 321–343.
Saracevic, T. (2007a). Relevance: A review of the literature and a framework for thinking on the notion in information science. Part II: Nature and manifestations of relevance. Journal of the American Society for Information Science and Technology, 58(13), 1915–1933. https://doi.org/10.1002/asi.20682
Saracevic, T. (2007b). Relevance: A review of the literature and a framework for thinking on the notion in information science. Part III: Behavior and effects of relevance. Journal of the American Society for Information Science and Technology, 58(13), 2126–2144.
Saracevic, T. (2016). The Notion of Relevance in Information Science: Everybody knows what relevance is. But, what is it really? Synthesis Lectures on Information Concepts, Retrieval, and Services.
Sawyer, R. K. (2005). The Cambridge handbook of the learning sciences. Cambridge University Press.
Scharinger, C., Kammerer, Y., & Gerjets, P. (2016). Fixation-Related EEG Frequency Band Power Analysis: A Promising Neuro-Cognitive Methodology to Evaluate the Matching-Quality of Web Search Results? HCI International 2016 PostersExtended Abstracts, 245–250. https://doi.org/10.1007/978-3-319-40548-3-41
Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129.
Slanzi, G., Balazs, J. A., & Velásquez, J. D. (2017). Combining eye tracking, pupil dilation and EEG analysis for predicting web users click intention. Information Fusion, 35, 51–57. https://doi.org/10.1016/j.inffus.2016.09.003
Smith, C. L., Gwizdka, J., & Feild, H. (2016). Exploring the use of query auto completion: Search behavior and query entry profiles. Proceedings of the 2016 ACM on Conference on Human Information Interaction and Retrieval, 101–110. https://doi.org/10.1145/2854946.2854975
Smith, C. L., & Kantor, P. B. (2008). User adaptation: Good results from poor systems. Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 147–154.
Spink, A. (1997). Study of interactive feedback during mediated information retrieval. Journal of the American Society for Information Science.
Syed, R., Collins-Thompson, K., Bennett, P. N., Teng, M., Williams, S., Tay, D. W. W., & Iqbal, S. (2020). Improving learning outcomes with gaze tracking and automatic question generation. The Web Conference (WWW).
Urgo, K., & Arguello, J. (2022). Learning assessments in search-as-learning: A survey of prior work and opportunities for future research. Information Processing & Management, 59(2), 102821.
Vakkari, P. (2000). Cognition and changes of search terms and tactics during task performance: A longitudinal case study. In Content-based multimedia information access-volume 1 (pp. 894–907).
Vakkari, P. (2001a). Changes in search tactics and relevance judgements when preparing a research proposal a summary of the findings of a longitudinal study. Information Retrieval, 4(3), 295–310.
Vakkari, P. (2001b). A theory of the task-based information retrieval process: A summary and generalisation of a longitudinal study. Journal of Documentation, 57(1), 44–60. https://doi.org/10.1108/EUM0000000007075
Vakkari, P. (2016). Searching as learning: A systematization based on literature. Journal of Information Science, 42(1), 7–18. https://doi.org/10.1177/0165551515615833
Villa, R., & Halvey, M. (2013). Is relevance hard work? Evaluating the effort of making relevant assessments. Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, 765–768.
Wang, Y., Yin, D., Jie, L., Wang, P., Yamada, M., Chang, Y., & Mei, Q. (2018). Optimizing whole-page presentation for web search. ACM Trans. Web, 12(3). https://doi.org/10.1145/3204461
Weber, H., Becker, D., & Hillmert, S. (2019). Information-seeking behaviour and academic success in higher education: Which search strategies matter for grade differences among university students and how does this relevance differ by field of study? Higher Education, 77(4), 657–678. https://doi.org/10.1007/s10734-018-0296-4
Weber, H., Hillmert, S., & Rott, K. J. (2018). Can digital information literacy among undergraduates be improved? Evidence from an experimental study. Teaching in Higher Education, 23(8), 909–926. https://doi.org/10.1080/13562517.2018.1449740
White, R. (2016a). Interactions with search systems. Cambridge University Press.
White, R., Dumais, S., & Teevan, J. (2009). Characterizing the influence of domain expertise on web search behavior. Proceedings of the Second ACM International Conference on Web Search and Data Mining - WSDM ’09, 132. https://doi.org/10.1145/1498759.1498819
Wildemuth, B. M. (2004). The effects of domain knowledge on search tactic formulation. Journal of the American Society for Information Science and Technology, 55(3), 246–258. https://doi.org/10.1002/asi.10367
Wilson, M. J., & Wilson, M. L. (2013). A comparison of techniques for measuring sensemaking and learning within participant-generated summaries. Journal of the American Society for Information Science and Technology, 64(2), 291–306.
Wilson, T. D. (1999). Models in information behaviour research. Journal of Documentation, 55(3), 249–270.
Xu, L., Zhou, X., & Gadiraju, U. (2020). How does team composition affect knowledge gain of users in collaborative web search? Conference on Hypertext and Social Media (HT).
Yu, R., Gadiraju, U., Holtz, P., Rokicki, M., Kemkes, P., & Dietze, S. (2018). Predicting User Knowledge Gain in Informational Search Sessions. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 75–84. https://doi.org/10.1145/3209978.3210064
Zhang, P., & Soergel, D. (2016). Process patterns and conceptual changes in knowledge representations during information seeking and sensemaking: A qualitative user study. Journal of Information Science, 42(1), 59–78.
Zhang, X., Cole, M., & Belkin, N. (2011). Predicting UsersDomain Knowledge from Search Behaviors. Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, 1225–1226. https://doi.org/10.1145/2009916.2010131
Zlatkin-Troitschanskaia, O., Hartig, J., Goldhammer, F., & Krstev, J. (2021). Students’ online information use and learning progress in higher education A critical literature review. Studies in Higher Education, 1–26. https://doi.org/10.1080/03075079.2021.1953336